LED散熱途徑
依據(jù)不同的封裝技術(shù),其散熱方法亦有所不同,而LED各種散熱途徑方法約略可以下圖示意之:
1. 從空氣中散熱
2. 熱能直接由System circuit board導(dǎo)出
3. 經(jīng)由金線將熱能導(dǎo)出
4. 若為共晶及Flip chip制程,熱能將經(jīng)由通孔至系統(tǒng)電路板而導(dǎo)出)
LED晶粒散熱基板
LED晶?;逯饕亲鳛長(zhǎng)ED 晶粒與系統(tǒng)電路板之間熱能導(dǎo)出的媒介,藉由打線、共晶或覆晶的制程與LED 晶粒結(jié)合。而基于散熱考量,目前市面上LED晶?;逯饕蕴沾苫鍨橹鳎跃€路備制方法不同約略可區(qū)分為:厚膜陶瓷基板、低溫共燒多層陶瓷、以及薄膜陶 瓷基板三種,在傳統(tǒng)高功率LED元件,多以厚膜或低溫共燒陶瓷基板作為晶粒散熱基板,再以打金線方式將LED晶粒與陶瓷基板結(jié)合。如前言所述,此金線連結(jié) 限制了熱量沿電極接點(diǎn)散失之效能。因此,近年來,國(guó)內(nèi)外大廠無不朝向解決此問題而努力。其解決方式有二,其一為尋找高散熱系數(shù)之基板材料,以取代氧化鋁, 包含了矽基板、碳化矽基板、陽極化鋁基板或氮化鋁基板,其中矽及碳化矽基板之材料半導(dǎo)體特性,使其現(xiàn)階段遇到較嚴(yán)苛的考驗(yàn),而陽極化鋁基板則因其陽極化氧 化層強(qiáng)度不足而容易因碎裂導(dǎo)致導(dǎo)通,使其在實(shí)際應(yīng)用上受限,因而,現(xiàn)階段較成熟且普通接受度較高的即為以氮化鋁作為散熱基板;然而,目前受限于氮化鋁基板 不適用傳統(tǒng)厚膜制程(材料在銀膠印刷后須經(jīng)850℃大氣熱處理,使其出現(xiàn)材料信賴性問題),因此,氮化鋁基板線路需以薄膜制程備制。以薄膜制程備制之氮化 鋁基板大幅加速了熱量從LED晶粒經(jīng)由基板材料至系統(tǒng)電路板的效能,因此大幅降低熱量由LED晶粒經(jīng)由金屬線至系統(tǒng)電路板的負(fù)擔(dān),進(jìn)而達(dá)到高熱散的效果。
另一種熱散的解決方案為將LED晶粒與其基板以共晶或覆晶的方式連結(jié),如此一來,大幅增加經(jīng)由電極導(dǎo)線至系統(tǒng)電路板之散熱效率。然而此制程對(duì)于基板的布線 精確度與基板線路表面平整度要求極高,這使得厚膜及低溫共燒陶瓷基板的精準(zhǔn)度受制程網(wǎng)版張網(wǎng)問題及燒結(jié)收縮比例問題而不敷使用?,F(xiàn)階段多以導(dǎo)入薄膜陶瓷基 板,以解決此問題。薄膜陶瓷基板以黃光微影方式備制電路,輔以電鍍或化學(xué)鍍方式增加線路厚度,使得其產(chǎn)品具有高線路精準(zhǔn)度與高平整度的特性。共晶/覆晶制 程輔以薄膜陶瓷散熱基板勢(shì)必將大幅提升LED的發(fā)光功率與產(chǎn)品壽命。
近年來,由于鋁基板的開發(fā),使得系統(tǒng)電路板的散熱問題逐漸獲得改善,甚而逐漸往可撓曲之軟式電路板開發(fā)。另一方面,LED晶?;逡嘀鸩匠蚪档推錈嶙璺较蚺Α?/p>
內(nèi)容來自百科網(wǎng)