1 簡介
在高速旋轉(zhuǎn)機械和往復式運動機械的狀態(tài)分析,振動研究、分析測量中,對非接觸的高精度振動、位移信號,能連續(xù)準確地采集到轉(zhuǎn)子振動狀態(tài)的多種參數(shù)。如軸的徑向振動、振幅以及軸向位置。從轉(zhuǎn)子動力學、軸承學的理論上分析,大型旋轉(zhuǎn)機械的運動狀態(tài),主要取決于其核心—轉(zhuǎn)軸,而電渦流傳感器,能直接非接觸測量轉(zhuǎn)軸的狀態(tài),對諸如轉(zhuǎn)子的不平衡、不對中、軸承磨損、軸裂紋及發(fā)生摩擦等機械問題的早期判定,可提供關鍵的信息。電渦流傳感器以其長期工作可靠性好、測量范圍寬、靈敏度高、分辨率高、響應速度快、抗干擾力強、不受油污等介質(zhì)的影響、結(jié)構簡單等優(yōu)點,在大型旋轉(zhuǎn)機械狀態(tài)的在線監(jiān)測與故障診斷中得到廣泛應用。
2 原理
根據(jù)法拉第電磁感應原理,塊狀金屬導體置于變化的磁場中或在磁場中作切割磁力線運動時(與金屬是否塊狀無關,且切割不變化的磁場時無渦流),導體內(nèi)將產(chǎn)生呈渦旋狀的感應電流,此電流叫電渦流,以上現(xiàn)象稱為電渦流效應。而根據(jù)電渦流效應制成的傳感器稱為電渦流式傳感器。
前置器中高頻振蕩電流通過延伸電纜流入探頭線圈,在探頭頭部的線圈中產(chǎn)生交變的磁場。當被測金屬體靠近這一磁場,則在此金屬表面產(chǎn)生感應電流,與此同時該電渦流場也產(chǎn)生一個方向與頭部線圈方向相反的交變磁場,由于其反作用,使頭部線圈高頻電流的幅度和相位得到改變(線圈的有效阻抗),
這一變化與金屬體磁導率、電導率、線圈的幾何形狀、幾何尺寸、電流頻率以及頭部線圈到金屬導體表面的距離等參數(shù)有關。通常假定金屬導體材質(zhì)均勻且性能是線性和各項同性,則線圈和金屬導體系統(tǒng)的物理性質(zhì)可由金屬導體的電導率б、磁導率ξ、尺寸因子τ、頭部體線圈與金屬導體表面的距離D、電流強度I和頻率ω參數(shù)來描述。則線圈特征阻抗可用Z=F(τ,ξ,б,D,I,ω)函數(shù)來表示。通常我們能做到控制τ,ξ,б,I,ω這幾個參數(shù)在一定范圍內(nèi)不變,則線圈的特征阻抗Z就成為距離D的單值函數(shù),雖然它整個函數(shù)是一非線性的,其函數(shù)特征為“S”型曲線,但可以選取它近似為線性的一段。于此,通過前置器電子線路的處理,將線圈阻抗Z的變化,即頭部體線圈與金屬導體的距離D的變化轉(zhuǎn)化成電壓或電流的變化。輸出信號的大小隨探頭到被測體表面之間的間距而變化,電渦流傳感器就是根據(jù)這一原理實現(xiàn)對金屬物體的位移、振動等參數(shù)的測量。
3過程
當被測金屬與探頭之間的距離發(fā)生變化時,探頭中線圈的Q值也發(fā)生變化,Q值的變化引起振蕩電壓幅度的變化,而這個隨距離變化的振蕩電壓經(jīng)過檢波、濾波、線性補償、放大歸一處理轉(zhuǎn)化成電壓(電流)變化,最終完成機械位移(間隙)轉(zhuǎn)換成電壓(電流)。由上所述,電渦流傳感器工作系統(tǒng)中被測體可看作傳感器系統(tǒng)的一半,即一個電渦流位移傳感器的性能與被測體有關。電渦流傳感器工作原理如圖所示
按照電渦流在導體內(nèi)的貫穿情況,此傳感器可分為高頻反射式和低頻透射式兩類,但從基本工作原理上來說仍是相似的。電渦流式傳感器最大的特點是能對位移、厚度、表面溫度、速度、應力、材料損傷等進行非接觸式連續(xù)測量,另外還具有體積小,靈敏度高,頻率響應寬等特點,應用極其廣泛。
內(nèi)容來自百科網(wǎng)