當(dāng)前位置:首頁 > 科技文檔 > 機(jī)械工業(yè) > 正文

基于1DCNN-BiLSTM的端到端滾動軸承故障診斷方法

機(jī)床與液壓 頁數(shù): 8 2024-06-15
摘要: 針對滾動軸承早期故障診斷時時頻域特征選取主觀性強(qiáng)、時序特征信息利用不足等問題,提出一種基于卷積神經(jīng)網(wǎng)絡(luò)和雙向長短時記憶神經(jīng)網(wǎng)絡(luò)的滾動軸承早期故障診斷方法。采用卷積神經(jīng)網(wǎng)絡(luò)提取原始振動信號特征,并在卷積層后引入批正則化層,以消除數(shù)據(jù)的不規(guī)則性對權(quán)重優(yōu)化的影響,并通過擴(kuò)展首層卷積層和調(diào)整步長以提高特征提取效率。引入雙向長短時記憶神經(jīng)網(wǎng)絡(luò)提升卷積神經(jīng)網(wǎng)絡(luò)對時序特征的提取能力,通過批正... (共8頁)

開通會員,享受整站包年服務(wù)立即開通 >
科技文檔
數(shù)學(xué) 力學(xué) 化學(xué) 金融 證券 保險(xiǎn) 投資 會計(jì) 審計(jì) 園藝 林業(yè) 旅游 體育 物理學(xué) 生物學(xué) 天文學(xué) 氣象學(xué) 海洋學(xué) 地質(zhì)學(xué) 新能源 金屬學(xué) 農(nóng)藝學(xué) 農(nóng)作物 管理學(xué) 領(lǐng)導(dǎo)學(xué) 自然科學(xué) 系統(tǒng)科學(xué) 資源科學(xué) 無機(jī)化工 有機(jī)化工 燃料化工 化學(xué)工業(yè) 材料科學(xué) 礦業(yè)工程 冶金工業(yè) 安全科學(xué) 環(huán)境科學(xué) 工業(yè)通用 機(jī)械工業(yè) 無線電子 電信技術(shù) 鐵路運(yùn)輸 汽車工業(yè) 船舶工業(yè) 動力工程 電力工業(yè) 農(nóng)業(yè)科學(xué) 農(nóng)業(yè)工程 植物保護(hù) 動物醫(yī)學(xué) 教育理論 學(xué)前教育 初等教育 中等教育 高等教育 職業(yè)教育 成人教育 自然地理 地球物理 經(jīng)濟(jì)統(tǒng)計(jì) 農(nóng)業(yè)經(jīng)濟(jì) 工業(yè)經(jīng)濟(jì) 交通經(jīng)濟(jì) 企業(yè)經(jīng)濟(jì) 文化經(jīng)濟(jì) 信息經(jīng)濟(jì) 貿(mào)易經(jīng)濟(jì) 財(cái)政稅收 市場研究 科學(xué)研究 互聯(lián)網(wǎng) 自動化 輕工業(yè) 核科學(xué) 服務(wù)業(yè) 石油然氣 服務(wù)業(yè) 野生動物 水產(chǎn)漁業(yè) 硬件 儀器儀表 航空航天 武器軍事 公路運(yùn)輸 水利水電 建筑科學(xué) 軟件